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Generative AI for High-Stakes Decisions with Societal Impact
Addressing today’s most critical societal problems, such as pandemic response and biodiversity conservation,

requires intelligent systems capable of making reliable decisions under evolving uncertainty. For example, during
the COVID-19 pandemic, governments had to allocate limited vaccines and hospital beds urgently while facing
rapidly changing infection rates. These decisions had immediate consequences for public health, and mistakes
could lead to significant loss of life. While optimization and reinforcement learning (RL) are commonly
applied to one-time and sequential decisions, their deployment in societal contexts presents key challenges: (1)
societal decisions are high-risk and require accurate uncertainty quantification in dynamic environments, which
is difficult due to the large spatial and temporal scales involved; (2) timely decisions are essential for effective
interventions, but traditional optimization methods are costly to re-solve in large action spaces; and (3) data
collection is expensive, yet RL relies on extensive interactions to learn effective policies.

I believe that recent advances in generative AI can fundamentally enhance decision-making in societal ap-
plications. First, generative models learn full probability distributions over high-dimensional data, making them
well-suited for modeling uncertainty in large-scale, dynamic environments. Second, by reframing optimization
as a generative process, these models can directly learn a probabilistic mapping from problem parameters to
high-quality decisions, providing an efficient alternative to repeated solver calls. Third, they capture complex
data patterns that serve as data-driven priors to improve sample efficiency in future decisions.

Building on these foundations, my research focuses on advancing generative AI with optimization and
reinforcement learning to enable reliable decision-making in high-stakes societal settings. The key technical
contributions of my work are summarized below (Fig. 1):

• Uncertainty-aware forecasting with generative models for robust decisions. I integrated flow matching
with domain knowledge to generate uncertainty-aware forecasts that remain reliable even under sparse
data and noisy observations [1]. I further proposed the first robust optimization framework in which the
uncertainty set is induced by diffusion models and supported by theoretical guarantees [2].

• Scalable and expressive decision-making through generation. I used energy-based models to reformulate
optimization as a generation task. This perspective yielded up to 100× speedup in model training [3], and
enables optimization over constraints that are difficult to specify explicitly [4].

• Generative models as priors for sample-efficient RL. To improve the sample efficiency of RL, I leveraged
flow matching to extract prior knowledge from pre-collected offline data. By exploiting its connection to
optimal transport, I developed a method that selectively incorporates useful prior knowledge during training,
even when the offline data exhibit distributional shifts in environmental dynamics [5].

To ensure real-world impact, my work addresses pressing societal challenges in environmental sustainability
and public health. I work closely with practitioners and deploy models in collaboration with WCS and WWF,
co-designing predictive patrol strategies to reduce poaching of endangered species. This includes the first
application of generative AI for poaching risk prediction [1]. I also partner with ARMMAN, a large-scale
maternal and child health program that reaches over 40 million beneficiaries across India, to increase care
engagement and reduce maternal and infant mortality through mobile health interventions [6]. My research has
also been honored with the Otto & Jenny Krauss Fellowship from Georgia Tech.
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Figure 1: My research advances generative AI to enable reliable decision-making in high-stakes societal settings.
I work closely with field partners to translate algorithmic innovations into real-world impact.
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Figure 2: Predicting Poaching Risk with Noisy Detection. We integrate flow matching with an ecological
detection framework to account for imperfect detection in poaching data. (a) True underlying poaching risk
estimated via flow matching. (b) Probability of actual detection by rangers, accounting for detection uncertainty.
(c) Rangers conducting patrols in the national park. Photo credit: Wildlife Conservation Society (WCS).

1 Uncertainty-aware Forecasting with Generative Models for Robust Decisions

Proactive decision-making often requires first forecasting future environmental conditions and then optimizing
actions accordingly. For example, conservation agencies must predict poaching risk to allocate limited patrol
resources effectively. Such a societal challenge involves high stakes, making accurate uncertainty quantification
essential for effective risk management [7]. My research advances this goal by developing generative models for
uncertainty-aware forecasting under noisy and limited data, and by designing robust optimization frameworks
that leverage these forecasts to support reliable decision-making.

Adversarial behavior prediction through flow matching for conservation. Adversarial behaviors in con-
servation, such as poaching and illegal fishing, are complex and adaptive. While flow matching provides a
powerful approach for modeling high-dimensional behavior distributions, real-world conservation data pose
two key challenges: imperfect detection and limited data. To address these, I integrated flow matching with an
ecological occupancy model and trained the flow in latent space to better infer true adversarial activity. I further
incorporated domain knowledge by initializing the flow with a linear ecological prior to enhance generalization
with limited data. In collaboration with the Uganda Wildlife Authority and WCS, our method improved poaching
prediction accuracy by 10% across Murchison Falls and Queen Elizabeth National Parks. To our knowledge,
this is the first application of generative AI for forecasting adversarial behavior in conservation [1].

Probabilistic time-series forecasting for public health. Time-series forecasting plays a critical role in
public health decision-making. In collaboration with the CDC, we developed a non-parametric framework
that combines deep sequential models with neural stochastic processes to produce well-calibrated probabilistic
forecasts of influenza [8]. I further disentangled epistemic uncertainty (arising from limited data) and aleatoric
uncertainty (arising from inherent randomness) [9], and demonstrated with ARMMAN that this separation
improved predictions of maternal engagement in mobile health programs [10].

To support structured probabilistic forecasting in more complex settings, I extended these methods to handle
complex data types, including spatial graphs [11, 12], hierarchical geospatial structures [13], and multi-modal
time-series data with heterogeneous signals [14, 15].

Robust optimization with diffusion models. To translate generative forecasts into reliable decisions, I pro-
posed the first robust optimization framework that constructs uncertainty sets directly from diffusion models, with
formal guarantees [2]. The problem is framed as a zero-sum game between a decision-maker and nature, where
nature selects worst-case forecasts from a neighborhood around the diffusion model’s forecasted distribution. A
key challenge is that diffusion models represent complex, high-dimensional distributions without closed-form
expressions, rendering standard robust optimization inapplicable. To address this, I developed a novel algorithm
that integrates diffusion-based sampling with twisted sequential Monte Carlo to efficiently approximate the
worst-case distribution. I proved convergence to an 𝜖-optimal solution for the decision-maker with high proba-
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bility, even under limited samples, training steps, and continuous action spaces. Applied to patrol optimization
in Murchison Falls National Park, this approach reduced regret by 68%. We later introduced a lightweight score
function estimator to avoid differentiating through the diffusion sampling process, significantly accelerating the
training of the diffusion forecaster while preserving alignment with the downstream optimization objective [16].

2 Scalable and Expressive Decision-Making through Generation

Societal decision-making often involves extremely large action spaces. In public health, for example, allocating
limited medical resources such as hospital beds across large populations and over multiple time periods results
in a combinatorial number of possibilities. Traditional optimization methods solve each instance independently,
which is computationally expensive at scale. Moreover, in many real-world applications, constraints are often
implicit or difficult to formalize analytically, complicating direct optimization. To address these challenges, I
have developed methods that transform optimization into a generative modeling task, enabling scalable decision-
making and allowing optimization over constraints that are otherwise hard to specify explicitly.

Scalable optimization with energy-based models. A key challenge in end-to-end decision-making is the
mismatch between forecasting and optimization objectives: forecasting models minimize prediction error, while
optimization aims to improve decision quality. Existing predict-then-optimize methods address this by repeatedly
differentiating through an optimization solver using KKT conditions, which is computationally expensive at
scale. To address this, I developed SO-EBM [3], a scalable alternative that reframes optimization as a generative
modeling task. SO-EBM uses an energy-based model to learn the conditional distribution over decisions given
problem parameters by maximizing the likelihood of precomputed optimal actions, with a regularization term
to shape the decision landscape. This eliminates solver-based differentiation and can achieve up to 100× faster
training. I further extended this approach to settings with extreme uncertainty [17].
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Figure 3: DiffOPT optimizes the ob-
jective ℎ(𝑥) under constraints 𝐶 that
are difficult to specify analytically, by
learning them from data using a dif-
fusion model.

Handling unknown constraints in optimization with diffusion mod-
els. In many real-world applications, the constraints of an optimization
problem are difficult to specify explicitly, yet violating them may re-
sult in unsafe or infeasible solutions. Existing methods often rely on
derivative-free optimization combined with a constraint oracle, but these
approaches are hard to scale in high-dimensional spaces and may not be
applicable when an oracle is unavailable. To address this, I proposed
DiffOPT, a diffusion-based method that learns the manifold of valid
solutions directly from high-dimensional data [4]. The constrained op-
timization problem is reformulated as a sampling task from the product
of a Boltzmann distribution over the objective and the learned manifold.
This formulation enables robust decision-making in large action spaces
without relying on hand-crafted constraints, thereby extending generative
optimization to more realistic and complex settings.

3 Generative Models as Priors for Sample-Efficient Reinforcement Learning

Training sequential decision policies using RL often requires extensive interaction with the environment to
support effective exploration. In societal settings, such interactions are costly. For example, in conservation
planning, national parks may have only a small number of rangers available for patrol. A common strategy to
improve sample efficiency is to incorporate offline data collected under prior policies into training. However,
such data may come from different time periods or regions, and shifts in environmental dynamics can limit its
applicability. To use offline data effectively, it is essential to estimate the discrepancy between offline dynamics
(captured in historical data) and online dynamics (encountered during deployment) and filter out mismatched
samples. This remains challenging, as online dynamics are difficult to learn accurately from limited interactions.
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To address this challenge, I proposed using flow matching as an informative prior to estimate the dynamics
gap more data-efficiently [5]. Instead of initializing from a random base distribution (e.g., a standard Gaussian),
my method first trains a flow model on offline data to serve as an informative base, which is then used to train
a second flow that models the online dynamics. I theoretically showed that the learned base flow captures
richer prior knowledge, improving the generalization of online dynamics. Furthermore, training the second flow
under an optimal transport coupling allows its average displacement to reflect the Wasserstein distance between
offline and online dynamics. This enables the selective incorporation of useful prior knowledge from shifted
offline data and significantly enhances sample efficiency. Finally, we introduced a decision-aware measure of
the dynamics gap that captures both distributional differences and their impact on decision quality [18].

4 Future Vision

My prior work has laid the foundation for connecting generative models with decision-making. Building on
this, my long-term goal is to develop generative AI systems capable of autonomously supporting complex
decision-making in collaboration with public-sector partners. Such collaborations often require repeated efforts
to contextualize challenges and co-design tailored solutions. Developing AI systems capable of navigating this
process autonomously could significantly accelerate impact, particularly in low-resource settings where expert
capacity is limited. To advance this vision, I plan to pursue the following directions:

Multiagent systems for autonomous collaboration with the public sector. Generative foundation models,
such as large language models (LLMs), offer new opportunities for autonomous interaction with stakeholders
through natural language. Building on our recent work on LLM agents [6, 19], I aim to advance from single-
agent systems to coordinated teams of specialized agents that support complex societal decision-making. In
this framework, agents take on roles such as coordinator, planner, analyst, and verifier. The coordinator man-
ages stakeholder interaction and inter-agent communication; the planner formulates and decomposes decision
problems; the analyst simulates outcomes; and the verifier ensures feasibility and compliance. I am currently
working on learning role-specific policies using multi-agent RL. Looking ahead, I will design communication
protocols and dynamic role-allocation mechanisms that reassign roles at runtime to enhance coordination.

Human-AI collaboration in high-stakes societal domains. Although generative AI has made significant
progress, human participation remains essential in societal decision-making, particularly when safety is a major
concern. Humans may intervene when needed or provide input during interactions. Building on my prior
work in uncertainty quantification [7, 20], I will explore principled deferral policies that delegate decisions
to humans when model confidence is low or potential risk is high. Equally important is modeling human
behavior under bounded rationality. Diffusion models offer a promising direction, as they can capture complex,
high-dimensional probabilistic behavior. Together, these efforts aim to develop AI systems that serve not as
replacements, but as reliable and trustworthy collaborators in high-stakes environments.

Aligning generative decisions with pluralistic values of society. As generative AI systems increasingly
influence decisions affecting broad populations, a key challenge is ensuring they reflect society’s diverse values.
Existing methods often optimize for average preferences, overlooking critical differences across communities and
stakeholders. To truly serve the public good, generative models must reconcile multiple, and often conflicting,
objectives. In domains such as public policy and resource allocation, effective solutions must balance economic
efficiency, environmental sustainability, and societal well-being—including health, education, and community
stability. Building on my prior work aligning generative models with human preferences via RL [21], I will
further explore how to incorporate pluralistic values into decision-making. One promising direction is to
generate a portfolio of policies that captures a spectrum of stakeholder preferences, as in my recent work [22].

While much work remains to be done, I believe generative AI can be a transformative tool for high-stakes
decision-making. Its impact can extend far beyond commercial success to meaningfully benefit society.
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